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Computational algorithms for multiscale

identification of nonlinearities in

Hammerstein systems with random inputs‡

Przemysław Śliwiński∗ and Zygmunt Hasiewicz†

Abstract

There are well known procedures for computing values of compactly supported wavelets in binary

grid points. Such algorithms are inherently well suited for solving system identification tasks with fixed

input design. We show that they can be also efficiently used for the solution of system identification

problems with random x-variables.

Index Terms

compactly supported wavelets, computational algorithm, system identification, Hammerstein system

I. INTRODUCTION

It is well known that compactly supported wavelet functions invented by Daubechies have no explicit

formulas (except for Haar family) but are defined by recursive procedures. These procedures are computa-

tionally simple and fast, however, provide with exact values of wavelet functions only at binary grid points

2−Hb, H, b = . . . ,−1, 0, 1, . . . , where H <∞, i.e. for arguments with finite binary representation; see
Daubechies [3], Strang [18]. This is not a disadvantage when excitations (arguments) are deterministic and

equidistant (e.g. in signal and image processing, Mallat [2], [14], numerical algebra, Ruskai et al. [17],

etc.) but becomes a shortcoming when inputs are random. This problem has been already investigated

only in relation to computing wavelet expansion coefficients; see Delyon and Juditsky [4], Antoniadis,

Grégoire and Vial [1], Härdle et al. [9], Kovacz and Silverman [13] and Györfi et al. [7].

‡This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.
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In this correspondence we examine the problem in the context of nonparametric identification of

nonlinear characteristics of Hammerstein systems, with the use of compactly supported wavelet scaling

functions. Adequate identification procedures, worked out in [10], provide potentially efficient recovering

of nonlinearities in Hammerstein systems under random inputs, however, the aforementioned limitations

make it necessary in practice to create computational counterparts of the theoretical algorithms to

deal efficiently with random inputs. The clue of our proposition is to round-off random input data to

the neighboring binary grid points and substitute scaling functions by their proper piecewise-constant

approximations. This leads to computationally simple procedures which, under easy to fulfill conditions,

maintain convergence and convergence rate of the prototype.

Fig. 1. Hammerstein system

We start with short presentation of the reference multiscale identification algorithm and its limit

properties. Then we construct a class of the computational algorithms and examine their asymptotic

behavior, as well. Specifically, we establish convergence conditions and provide rate of convergence of

the practical computational algorithms in dependence of smoothness of the identified nonlinearity, input

density (assumed to exist) and regularity of the wavelet scaling function.

II. REFERENCE MULTISCALE IDENTIFICATION ALGORITHM

The reference wavelet algorithm for identifying nonlinear characteristics µ (x) in Hammerstein systems

(see Fig. 1) from random input-output data {(xk, yk)} , k = 1, . . . ,N , has the form [10]:

µ̂ (x) =

nmax(x)P
n=nmin(x)

α̂mnϕmn (x)

nmax(x)P
n=nmin(x)

âmnϕmn (x)

,
α̂mn = N

−1
NX
k=1

ϕmn (xk) yk

âmn = N
−1

NX
k=1

ϕmn (xk)

(1)

where

ϕmn (x) = 2
m/2ϕ (2mx− n) , m, n = . . .− 1, 0, 1, . . .

are dilations and translations of a compactly supported wavelet scaling function ϕ (x) from, e.g., Daubechies,

symmlet or coiflet family. Parameter m is referred to as a scaling factor and translation limits nmin (x)
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and nmax (x) depend on x and are related to the supports of the employed scaling functions; see Table

I in Appendix IV.

We assume the following conditions (cf. [10]):

A1. The nonlinearity µ (x) (to be identified) is bounded.

A2. The system input {xk} , k = . . . ,−1, 0, 1, . . . , is an i.i.d. random process with finite variance
possessing bounded probability density function f (x).

A3. Dynamic element of the system, with the impulse response {λi} , i = 0, 1, . . . , is asymptotically
stable.

A4. The output noise {zk} , k = . . . ,−1, 0, 1, . . . , is zero mean stationary process with finite
variance, white or correlated.

Remark 1: Using only outer signals {(xk, yk)}, due to the complex structure of the system one cannot
certainly identify the true system nonlinearity µ (x) but only its scaled and shifted version µ0 (x) =

λ0µ (x) + d, λ0 6= 0 by assumption, d = Eµ (x1)P∞
i=1 λi (cf. e.g. [6], [10] or [15]).

As was shown in [10], the following holds true.

Corollary 1 ([10, Th.1]): If the scaling factor m satisfies the conditions

m→∞ and 2m/N → 0 as N →∞ (2)

then

µ̂ (x)→ µ0 (x) in probability as N →∞,

at all points x in which µ (x) and f (x) are simultaneously continuous and f (x) > 0.

To assure convergence, it is thus enough to grow the scale m with the number of data N with arbitrary

rate less than log2N . However, to make the convergence the fastest possible, the growth of m must be

strictly related to the smoothness of the underlying nonlinearity µ (x), input probability density function

f (x) and the properties of employed scaling function ϕ (x) . Denoting by Cλ (x− ε, x+ ε) the class of

functions having, in the ε-neighborhood of x, r = dλe − 1 derivatives with the last one being Hölder
continuous with exponent λ− r (cf. e.g. [8], [14]), we get:
Theorem 1 (cf. [10, Th. 2]): If µ (x) ∈ Cλµ (x− ε, x+ ε) and f (x) ∈ Cλf (x− ε, x+ ε) , λµ,λf > 0,

and if the scale m is selected as

m =

»
1

2γ + 1
log2 2γN

¼
with γ = min {λµ,λf , p} (3)

June 9th, 2003 DRAFT



4

where p is a number of vanishing moments of the wavelet function ψ (x) associated with the scaling

function ϕ (x), then the algorithm in (1) achieves the convergence rate

|µ̂ (x)− µ0 (x)| = O
³
N−γ/(2γ+1)

´
in probability.

Proof: See Appendix I.

Remark 2: To achieve the fastest rate of convergence for a given nonlinearity µ (x) and input prob-

ability density f (x), it is necessary to apply scaling functions with p ≥ min {λµ,λf}. However, the
smoothness of µ (x) and f (x) is usually unknown and, moreover, can vary for different x’s (e.g. for

splines). Practically relevant issue of selection of proper p in such circumstances is discussed in [11,

Section 6.4].

III. COMPUTATIONAL ALGORITHM

Since we are not able to compute easily values of scaling functions ϕ (x) in arbitrary points x, which

is needed in (1), we approximate them by the values in appropriate binary grid points, exactly calculable

for any H; see (20) in Appendix IV. For a given x, these binary points can be chosen threefold:

bH (x) =


2−H

j
2Hx

k
2−H

j
2Hx+ 1/2

k
2−H

l
2Hx

m
i.e., as the left-nearest, the nearest, or the right-nearest binary grid neighbors of x, respectively. Denoting

x̄Hm = 2
−mbH (2mx), we propose the following approximators of ϕmn (x):

ϕ̄Hmn (x) = ϕmn (x̄Hm) = 2
m/2ϕ (bH (2

mx)− n) . (4)

Remark 3: Since suppϕmn (x) = [2−m (s1 + n) , 2−m (s2 + n)] , some integer s1, s2 (see Table I in

Appendix IV) and |x− x̄Hm| < 2−(m+H) for any bH (x) under consideration thus if x ∈ suppϕmn (x)
then also x̄Hm ∈ suppϕmn (x) for any bH (x) and H ≥ 0.
Our idea is to use the according approximators in place of their prototypes ϕmn (x) in the reference

algorithm (1), getting the following plug-in generic computational algorithm:

µ̃ (x) =

nmax(x)P
n=nmin(x)

α̃mnϕ̄
H
mn (x)

nmax(x)P
n=nmin(x)

ãmnϕ̄Hmn (x)

,
α̃mn = N

−1
NX
k=1

ϕ̄Hmn (xk) yk

ãmn = N
−1

NX
k=1

ϕ̄Hmn (xk)

(5)

Observe that approximators are used both for computing empirical wavelet coefficients and the values

of the estimate µ̃ (x) at each point x. It is clear that usage of these approximators instead of genuine
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scaling functions will cause an additional bias error in comparison with the reference algorithm. However,

with growing H this influence is reduced.

Theorem 2: Let the assumptions about µ (x) and f (x) of Theorem 1 hold and let ϕ (x) ∈ Cλϕ

(x− ε, x+ ε) ,λϕ > 0. If (2) is in force and

H →∞ (6)

then

µ̃ (x)→ µ0 (x) in probability as N →∞.
Proof: See Appendix II.

Note that to ensure convergence, the rate at which H tends to infinity can be arbitrarily slow (see (18)

and (19) in Appendix II). However, to maintain the original (as in Theorem 1) convergence rate for the

computational algorithm, the choice of the binary grid factor H must be more precise.

Theorem 3: Let all assumptions of Theorem 2 hold. If m is selected as in (3) and H is set according

to the rule

H =

»
γm

η

¼
where η = min {λϕ, 1} (7)

then the computational algorithm (5) preserves the convergence rate of the prototype (1), i.e.

|µ̃ (x)− µ0 (x)| = O
³
N−γ/(2γ+1)

´
in probability.

Proof: See Appendix III.

The choice of a suitable grid factor H depends therefore on three elements: the scale m, the number

p of vanishing moments of wavelet ψ (x) associated with the replaced scaling function ϕ (x), and the

smoothnesses of ϕ (x) , µ (x) and f (x). Even if the latter are unknown, H can still be ‘safely’ determined

as follows, based merely on the properties of scaling functions

H =

»
pm

η

¼
. (8)

This rule is certainly too pessimistic when min {λµ,λf}< p (i.e., produces proper, but ‘too big’, factors
H), but equal to (7) otherwise. It is moreover obvious that all H, greater than those determined by (7)

or (8), are, in view of Theorem 3, admissible as well.

Remark 4: In spite of the fact that all the results above are asymptotic (i.e., true for large N), one can

infer from (3), (7) and (8), a practical rule for selection of H:

H =

»
p

η (2p+ 1)
log2 2pN

¼
. (9)
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Remark 5: To be concise, our considerations have been confined to the Hammerstein class of nonlinear

systems. However, Corollary 1 and Theorems 1-3 are also valid for other nonlinear block-oriented systems,

e.g. multichannel systems; see [6], [11], [12], [15], [16].

IV. SIMULATION STUDY

The performance of the computational algorithm (5) for small and moderate number of data has been

investigated by means of computer simulations. During simulations, system input {xk} and output noise
{zk} were white and uniformly distributed on the intervals [−0.6, 0.6] and [−0.1, 0, 1] , respectively. Two
nonlinearities were included into test: smooth, µ1 (x) = arctan (x) and nonsmooth, µ2 (x) = sgn (x).

Dynamic element with finite impulse response {λi} = {1, 1/2, 1/4, 1/8} was selected as output dynamics.
The computational algorithm was based on the approximations of the third Daubechies scaling function

ϕ (x) (i.e. for p = 3 and λϕ ∼= 1.018; see [3]). The scales m and H were set according to the rules

in (3) and (9), yielding m = d1/7 log2 6Ne and H = d3/7 log2 6Ne, respectively. As the reference
algorithm we took the computational one with H = 15 (which ensures high quality approximation of the

scaling function but through (9) corresponds to rather impractical number of data N ∼= 5.72× 109). The
performance of the algorithm was measured globally by numerically computed MISE error (determined

in the interval [−0.5, 0.5] to reduce the influence of boundary effects).
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Fig. 2. MISE errors of the reference and computational algorithms (left y-axes) and differences between the MISE errors

(right y-axes) for nonlinearities (a) µ1 (x) and (b) µ2 (x)

The results are shown in Fig. 2. They reveal only a little difference in quality between the computational

and reference algorithm, not exceeding 10% of the MISE error of the latter for N > 100. Since for

N = 100 we have H = 4 and for N = 5000 we get merely H = 7, the plots reveal also that high
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precision in computation of wavelet function values is not necessary for efficiency of the identification

algorithm, particularly for smaller number of data.

V. FINAL REMARKS

We have proposed and examined a computational method which enables wavelet scaling function-based

identification algorithm to work efficiently with random inputs. In our approach, hardly computable scaling

functions in the original algorithm were replaced by their approximations which can be easily computed

by the standard method (as shown in Appendix IV). Our algorithm possesses the same limit properties

as the theoretical prototype and performs well also for moderate number of data.

We emphasize simplicity and efficiency of the algorithm. Simplicity comes from piecewise-constant

approximations, which are particularly convenient to program or to embed in a hardware. In turn,

efficiency is the consequence of the fact that the prospective grid factor H can be quite small in practice,

and therefore, the numerical overhead imposed by the conventional procedure (20) reported in Appendix

IV can have small impact on the overall computations in the identification algorithm. This is especially

the case when N , the number of data points {(xk, yk)}, is known in advance. Then the approximators
(i.e. ϕ-values at the binary grid points with adequate H) can be calculated beforehand and stored in a

computer memory.

APPENDIX I

PROOF OF THEOREM 1

Denote by ĝ (x) and f̂ (x) the numerator and denominator of the algorithm µ̂ (x), respectively.

For fixed x, we have

MSE ĝ (x) = bias 2ĝ (x) + var ĝ (x) .

Under assumptions A1-A4, for the variance term it holds that [10, Appendix A].

var ĝ (x) = O
³
2mN−1

´
. (10)

for each x. To compute bias error observe that E α̂mn = hg (x) ,ϕmn (x)i , see (1), i.e. empirical
coefficients α̂mn are unbiased estimators of inner products αmn = hg (x) ,ϕmn (x)i where g (x) =
µ0 (x) f (x). Hence

bias ĝ (x) =
∞X
k=m

lmax(x)X
l=lmin(x)

βklψkl (x) , βkl = hg (x) ,ψkl (x)i (11)
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where summation limits lmin (x), lmax (x) are related to supports of the wavelets ψkl (x) associated with

the scaling function ϕ (x) (see Table I). Since g (x) ∈ Cλg (x− ε, x+ ε) ,λg = min {λµ,λf}, we can
expand g (x) in the neighborhood (x− ε, x+ ε) into the following Taylor series; see Mallat [14, Section

6.1.1]:

g (x) =
dλge−1X
r=0

Gr · (x− v)r + ² (x, v) , v ∈ (x− ε, x+ ε)

where Gr = g(r) (v) /r! and ² (x, v) ≤ Lg |x− v|λg , some Lg > 0. Hence

βkl = hG0 · (x− v) ,ψkl (x)i+ · · ·+ hGdλge−1 · (x− v)dλge−1 ,ψkl (x)i+ hε (x, v) ,ψkl (x)i

As by assumption ψ (x) has p vanishing moments, we get (cf. [14, Section 6.1.3 and Th. 9.7])

|βkl| = O
³
2−k(γg+1/2)

´
, γg = min {λg, p} .

This along with (11) leads to

|bias ĝ (x)| = O ¡2−γgm¢ . (12)

Including (10), (12) and using the scale selection rule (3) results in

MSE ĝ (x) = O
³
N−2γg/(2γg+1)

´
. (13)

The same routine applied to the denominator f̂ (x) gives

MSE f̂ (x) = O
³
N−2γf/(2γf+1)

´
, γf = min {λf , p} (14)

Since min
n
γg, γf

o
= γg = γ, the conclusion is obtained by virtue of the following lemma (see Greblicki

and Pawlak [5, Th. 3]).

Lemma: If MSE ĝ (x) = O (N−a) and MSE f̂ (x) = O
³
N−b

´
, then for µ̂ (x) = ĝ (x) /f̂ (x) and

µ0 (x) = g (x) /f (x) it holds that

|µ̂ (x)− µ0 (x)| = O
³
N−min{a,b}/2

´
in probability.

APPENDIX II

PROOF OF THEOREM 2

Denote by g̃ (x) and f̃ (x) the numerator and denominator of µ̃ (x) in (5). Consider mean square error

of g̃ (x) for fixed x:

MSE g̃ (x) = bias2 g̃ (x) + var g̃ (x)
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Since each approximator ϕ̄Hmn (x) in (4) is bounded and compactly supported (as the original ϕmn (x)),

the variance component has the same order upper bound as the variance of the reference algorithm, i.e.

var g̃ (x) = O
³
2mN−1

´
(15)

Bias error can be split into two parts

bias g̃ (x) = [g (x)− E ĝ (x)] + [E ĝ (x)− E g̃ (x)]

= bias ĝ (x) + bias g̃ (x)

where bias ĝ (x) is as in (11) and

bias g̃ (x) =
nmax(x)X
n=nmin(x)

h
αmnϕmn (x)− ᾱmnϕ̄

H
mn (x)

i
(16)

with ᾱmn =
D
g (x) , ϕ̄Hmn (x)

E
is the approximation error induced by replacing ϕmn (x) with ϕ̄Hmn (x)

in the computational algorithm. To bound the expression in square brackets, we need the bound of the

approximation error of ϕmn (x) by ϕ̄Hmn (x). Since by assumption, ϕ (x) ∈ Cλϕ (x− ε, x+ ε), by the

Taylor series expansion in the neighborhood (x− ε, x+ ε) of x we have asymptotically (for large m;

see Remark 3)

ϕmn (x) =
dλϕe−1X
r=0

Φr · [2mx− bH (2mx)]r + ² (2mx, bH (2mx))

where Φr = ϕ
(r)
mn (x̄Hm) /r! = 2

m/2ϕ(r) (bH (2
mx)− n) /r! (see (4)) and where |² (2mx, bH (2mx))| ≤

2m/2Lϕ |2mx− bH (2mx)|λϕ , some Lϕ > 0. Hence, for λϕ ∈ (0, 1] we get that¯̄̄
ϕmn (x)− ϕ̄Hmn (x)

¯̄̄
≤ 2m/2Lϕ |2mx− bH (2mx)|λϕ

and, for λϕ > 1, that¯̄̄
ϕmn (x)− ϕ̄Hmn (x)

¯̄̄
≤ |Φ1| · |2mx− bH (2mx)|+ · · ·

+
¯̄̄
Φdλϕe−1

¯̄̄
· |2mx− bH (2mx)|dλϕe−1 + 2m/2Lϕ |2mx− bH (2mx)|λϕ

respectively. Since for each x and arbitrary bH (x) from (4) it holds that |x− bH (x)| < 2−H thus

|2mx− bH (2mx)| < 2−H for any m, and consequently we obtain the bound¯̄̄
ϕmn (x)− ϕ̄Hmn (x)

¯̄̄
= O

³
2m/22−ηH

´
(17)

where η = min {λϕ,1}. Using this bound and the following identity

αmnϕmn (x)− ᾱmnϕ̄
H
mn (x) = αmn

h
ϕmn (x)− ϕ̄Hmn (x)

i
+ ϕ̄Hmn (x) [αmn − ᾱmn]
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and including that |αmn| = O
³
2−m/2

´
,
¯̄̄
ϕ̄Hmn (x)

¯̄̄
= O

³
2m/2

´
and |αmn − ᾱmn| = O

³
2−m/22−ηH

´
,

any n, yields immediately
¯̄̄
αmnϕmn (x)− ᾱmnϕ̄

H
mn (x)

¯̄̄
= O

³
2−ηH

´
. The latter and (16) along with

nmax (x) − nmin (x) + 1 ≤ c, some c, for each x (see Table I in Appendix IV) gives
¯̄̄
bias g̃ (x)

¯̄̄
=

O
³
2−ηH

´
. Thus, owing to (12) we get bias2 g̃ (x) = O

¡
2−2γgm

¢
+ O

³
2−2ηH

´
, and eventually (see

(15))

MSE g̃ (x) = O
³
2−2γgm

´
+O

³
2−2ηH

´
+O

³
2mN−1

´
(18)

The same routine applied to the error MSE f̃ (x) results in the bound

MSE f̃ (x) = O
³
2−2γfm

´
+O

³
2−2ηH

´
+O

³
2mN−1

´
(19)

where γf is as in (14). These errors tend to zero as N → ∞ for m and H satisfying the convergence

conditions (2) and (6), respectively, which concludes the proof.

APPENDIX III

PROOF OF THEOREM 3

It is enough to observe that for m and H selected according to the rules (3) and (7) the MSE errors

(18)-(19) of the computational algorithm (5) are of the same order as the corresponding MSE errors

(13)-(14) of the prototype (1).

APPENDIX IV

COMPUTING DAUBECHIES SCALING FUNCTIONS

To compute values of the pth Daubechies scaling function ϕ in binary grid points

b =

·
b b+ 1 · · · b+ (2p− 2)

¸T
where b = 2−Hn, n = 0, 1, . . . , 2H − 1, the following conventional formula can be employed (see
Daubechies [3, Chapter 7.2] or Strang [18, Section 1.1]):

ϕ (b) =
HY
h=1

[(1− bh)A+ bhB]ϕ (0) (20)

where ϕ (b) is the resulting vector of exact values, bh ∈ {0, 1} are consecutive bits of b, and where
A and B are square, block-Toeplitz matrices (2p− 1)× (2p− 1), composed of the Daubechies scaling
function coefficients {ct} , t = 0, . . . , 2p− 1 (see e.g. Table 6.1 in Daubechies [3, Section 6.4]):

A = [aij ] = c2i−j and B = [bij] = c2i−j+1, i, j = 0, 1, . . . , 2p− 2
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Vector ϕ (0), providing with the values of ϕ at integers, is the eigenvector associated with eigenvalue

1 of the matrix with rows formed by terms of the right-hand side of dilations equations ϕ (x) =P2p−1
t=0 ctϕ (2x− t) yielded for x = 1, . . . , 2p − 2, respectively; see [18, Section 1.1]. The algorithm,

with adequately constructed matrices A and B and evaluated vectors ϕ (b) , can be used to compute

symmlets and coiflets approximators as well. MATLAB implementation can be found e.g. at G. Strang’s

homepage: http://www-math.mit.edu/~gs/.

Daubechies/symmlet coiflet

Support of ϕ (x) [0, 2p− 1] [−2p, 4p− 1]
Support of ψ (x) [1− p, p] [1− 3p, 3p]
nmin (x) b2mxc− 2p+ 2 b2mxc− 4p+ 2
nmax (x) d2mxe− 1 d2mxe+ 2p− 1
lmin (x) b2mxc− p+ 1 b2mxc− 3p+ 1
lmax (x) d2mxe+ p− 2 d2mxe+ 3p− 2
Vanishing

moments of ψ (x) p 2p

TABLE I

BASIC PROPERTIES OF WAVELET FUNCTIONS (p – WAVELET NUMBER)
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