
C&RSA&DHM algorithms – the shortests

course. . .

Przemys law Śliwiński



Part I

RSA & Cocks

1



Algorithm 1 (Rivest, Shamir, Adleman, 1977 & Cocks 1973) Let p and
q be a pair of primes. Let n = pq. We will need the value of the Euler’s totient
function ϕ (n), that yields a number of coprime numbers less than n. It happens
that for two primes, p, q, the formula is particularly simple, i.e. we have that

ϕ (n) = (p− 1) (q − 1) .

To create the first pair of encryption keys we need to find any number e : e ⊥
ϕ (n), that is, that e and ϕ (n) are relatively prime, i.e. e is coprime with ϕ (n)
(their greatest common divisor equals one; viz. gcd (e, ϕ (n)) = 1). The pair
(e, n) is the first (either public or private) key. To get the other key we need
to find a number d, which is a multiplicative inverse of e modulo ϕ (n), i.e. we
are looking for d such that1

(d · e) modϕ (n) = 1.

The pair (d, n) is the other (either private or public) key. Now, to encode
(encrypt) the message m, it suffices to perform a single operation employing
one key (e, n)

c = me modn.

To decipher (decrypt) it, one just needs the corresponding pair (d, n) since

m = cd modn.

1Operation amod p is just a rest of integer division of a by p, that is amod p = a−
⌊
a
p

⌋
p.

2



Proof. In order to verify the RSA algorithm, we merely need to verify the last
equality, that is, the fact that(

cd modn
)e

modn = med modn = m.

To this end, we need to recall the following properties of the RNS arithmetic:

1. The Fermat Little Theorem stating that if a ⊥ p then ap−1 mod p = 1.

2. The Chinese Remainder Theorem which states that for N = n1 · · · · · nr,
where ni ⊥ nj for i 6= j, and for any k, l < N , we have the following
equivalences

k ≡ lmodN ⇔ k ≡ lmodni and for each i = 1, . . . , r.

Clearly, in our case, that is for r = 2, it reduces to a simple logical
conjuction

k ≡ lmod pq ⇔ k ≡ lmod p ∧ k ≡ lmod q.

3. The basic fact that ap mod q = (amod q)
p

mod q = (
∏p

i=1 amod q) mod q =
(amod q · · · amod q)︸ ︷︷ ︸

p times

mod q.

4. The observation that ed− 1 = hϕ (pq) for some (unknown) h ∈ N , which
holds because edmodϕ (pq) = 1, and thus (edmodϕ (pq)− 1) modϕ (pq) =
0 = hϕ (pq))

5. Eventually:

med mod q =
(
med−1

)
mmod q

=
(
mhϕ(pq)

)
mmod q

=
(
mh(p−1)(q−1)

)
mmod q

=
(
m(q−1)

)h(p−1)

mmod q

= (1)
h(p−1)

mmod q = mmod q.

6. Verification that med mod p = mmod p is left to the reader. . .

Algorithm 2 (Digital signature aka fingerprint) Compute a hash value
of m and encrypt it using a private key (e, n) or (d, n).

3



Example 3 Let p = 11 and q = 7. Then n = pq = 77 and the corresponding
totient function of n, is

ϕ (n) = (p− 1) (q − 1) = 60.

Let now e = 17. Indeed, gcd (17, 60) = 1, that is, both numbers are relatively
prime. Clearly, d = 53. So the keys are (17, 77) and (53, 77) . Let m = 61, then
c = 6117 mod 77 = 52 and 5253 mod 77 = 61 = m.

To compute both gcd and multiplicative inverse one can use the compilation-
time recursive template programming tricks:

template <int k, int l>

struct gcd

{

enum { value = gcd<l, k % l>::value };

};

template <int k>

struct gcd<k, 0>

{

enum { value = k };

};

template <long w, long M, long k = w, long = 0>

struct mul_inv

{

enum

{

res = (k - 1) * M % w

};

enum

{

mi = mul_inv<w, M, k - 1, res>::mi

};

};

template <long w, long M, long k>

struct mul_inv<w, M, k, 1>

{

enum { mi = k };

};

template <long M, long k, long res>

struct mul_inv<1, M, k, res>

{

enum { mi = 1 };

};

4



Example 4 (Multiplication in a cloud) Let again p = 11 and q = 7. Then
n = pq = 77 and the corresponding totient function of n, is

ϕ (n) = (p− 1) (q − 1) = 60.

Let now e = 17. Indeed, gcd (17, 60) = 1, that is, both numbers are relatively
prime. Clearly, the multiplicative inverse, d = 53. So the public key is (17, 77)
and the private one is (53, 77) .

1. Let m1 = 11 and m2 = 3, then their encoded values (using a public key)
are

c1 = 1117 mod 77 = 44 and c2 = 317 mod 77 = 75,

respectively.

2. Now c1 and c2 are sent to the cloud and there they are multiplied there

c12 = 44 ∗ 75 = 3300.

3. The product c12 = 3300 (or 3300 mod 77 = 66) is sent back and we can de-
code it (using a private key) as if it is a message, so m = 330053 mod 77 =
33 (or, equivalently, 6653 mod 77 = 33).

5



Part II

DHM & Cocks

6



Definition 5 A number g is a primitive root modulo p if every number n,
coprime to p, is congruent to a power of g modulo p. If p is prime, then powers
of g generate all numbers 1, . . . , p− 1 (albeit in a ’random’ order).

Algorithm 6 (Diffie–Hellman–Merkle, 1976 & Cocks, 1969) Let Alice and
Bob publicly select p and g, and (in pectore) the private numbers a and b. Then,
they compute the public messages

A = ga mod p and B = gb mod p,

send them to each other, and compute their common secret key s

s = Ba mod p and s = Ab mod p.

Example 7 Let p = 23 and g = 5 (verify that g is indeed a primitive root
modulo p). Alice chooses a = 11 and Bob b = 8. Hence, Alice sends

A = 511 mod 23 = 22

and Bob sends
B = 58 mod 23 = 16.

Then Alice and Bob compute

s = 1611 mod 23 = 1 and s = 228 mod 23 = 1,

and both have the same (random) secret number s = 1, which they can use as a
key in e.g. AES.

Proof. Observe that

s = Ab mod p

= (ga mod p)
b

mod p = gab mod p = gba mod p

=
(
gb mod p

)a
= Ba mod p.

7



Part III

Hamming codes (no
Cooks!)

8



TBF. . .

9


