Parametric regression estimation. Part II: the constrained least squares

Przemysław Śliwiński

Abstract-Here we end our least-squares journey...

I. Introduction

A. CVX introduction... ${ }^{1}$

We have (again):

- A random input sequence, $\left\{x_{n}\right\} \in[-\pi, \pi]$ for all $n=$ $\ldots,-1,0,1, \ldots$.
- A system

$$
\begin{equation*}
m(x)=\sum_{k=1}^{K} \varphi_{k}(x) \cdot \alpha_{k} \tag{1}
\end{equation*}
$$

with some K, where $\left\{\alpha_{k}\right\}$ are unknown, and where, for instance, $\varphi_{k}(x)=\cos (k x)$.

- A random additive output noise, $\left\{z_{n}\right\} \sim N\left(0, \sigma_{z}^{2}\right)$.

B. Exercises

Exercise 1: Taking

$$
z_{n} \sim N(0,1), x_{n} \sim U[-\pi, \pi]
$$

and, $c f$. (1)

$$
m(x)=-1 \cdot \cos (x)+2 \cdot \cos (3 x)-1 \cdot \cos (5 x)
$$

generate $N=256$ input-output pairs.

$$
\left\{\left(x_{n}, y_{n}=m\left(x_{n}\right)+z_{n}\right)\right\} .
$$

Exercise 2: Employ the Matlab CVX ${ }^{2}$ library to find the vector, $\hat{A}_{\bar{K}}=\left[\begin{array}{lll}\hat{\alpha}_{1} & \cdots & \hat{\alpha}_{K}\end{array}\right]$, of the empirical coefficients (aka least-squares estimates, parameters) of the model, cf. (1)

$$
\hat{m}(x)=\sum_{k=1}^{K} \cos (k x) \cdot \hat{\alpha}_{k}, \text { for } \bar{K}=64,128,256,512
$$

of the actual system $m(x)$ using the generated measurement set $\left\{\left(x_{n}, y_{n}\right)\right\}$ under the extra assumption that

$$
\begin{equation*}
\left\|\hat{\alpha}_{k}\right\|_{p} \leq R, \text { some } p \in[1, \infty] \text { and } R>0 \tag{2}
\end{equation*}
$$

Exercise 3: Find the p and R such that the empirical mean square error

$$
\widehat{e r r}=\sum_{q=-Q}^{Q}\left[\hat{m}\left(x_{q}\right)-m\left(x_{q}\right)\right]^{2}, \text { for } x_{q}=\frac{q \pi}{Q} \text { and some } Q
$$

Exercise 4: Compare the results with the outcome of the Gasser-Müller and least-squares algorithm without constraints for the same settings.

[^0]
II. TIPS'N'TRICKS

A. CVX II

\% Measurements number N and model size K
$\mathrm{N}=\ldots$...; $\mathrm{K}=$.. .;
Q = ...;
\% Constraint parameters
$\mathrm{p}=\ldots$...; $\mathrm{R}=\ldots$;
\% Matrix of regressors FI
\% Vector of parameters A
FI = ...;
$\mathrm{Y}=\ldots$;
cvx_begin
variable A(K)
minimize(norm(FI * A - Y, 2))
subject to
cvx_end

B. Intuitive illustration

Compare shapes and areas of the norms in various L_{p} as in figure below. Relate them to the constrain in (2) and explain the impact on the LS solution.

Fig. 1. Shapes of various unit balls for various L_{p} norms, $p=1,1.5,2, \infty$

[^0]: ${ }^{1}$ Aka Machine Learning (ML) bread and butter/piece of cake/nuts and bolts...

 2http://cvxr.com/cvx/

