Parametric regression estimation. Part II: the constrained least squares

Przemysław Śliwiński

Abstract—Here we end our least-squares journey...

I. INTRODUCTION

A. CVX introduction...¹

We have (again):

• A random input sequence, $\{x_n\} \in [-\pi, \pi]$ for all $n = \dots, -1, 0, 1, \dots$

• A system

$$m(x) = \sum_{k=1}^{K} \varphi_k(x) \cdot \alpha_k, \qquad (1)$$

with some K, where $\{\alpha_k\}$ are unknown, and where, for instance, $\varphi_k(x) = \cos(kx)$.

• A random additive output noise, $\{z_n\} \sim N(0, \sigma_z^2)$.

B. Exercises

Exercise 1: Taking

$$z_n \sim N(0,1), x_n \sim U[-\pi,\pi],$$

and, cf. (1)

$$m(x) = -1 \cdot \cos(x) + 2 \cdot \cos(3x) - 1 \cdot \cos(5x),$$

generate N = 256 input-output pairs.

$$\left\{ \left(x_{n}, y_{n} = m\left(x_{n} \right) + z_{n} \right) \right\}.$$

Exercise 2: Employ the **Matlab CVX**² library to find the vector, $\hat{A}_{\bar{K}} = \begin{bmatrix} \hat{\alpha}_1 & \cdots & \hat{\alpha}_K \end{bmatrix}$, of the *empirical coefficients* (aka *least-squares estimates, parameters*) of the model, *cf.* (1)

$$\hat{m}(x) = \sum_{k=1}^{K} \cos(kx) \cdot \hat{\alpha}_k$$
, for $\bar{K} = 64, 128, 256, 512$

of the actual system m(x) using the generated measurement set $\{(x_n, y_n)\}$ under the extra assumption that

$$\|\hat{\alpha}_k\|_p \le R$$
, some $p \in [1, \infty]$ and $R > 0$. (2)

Exercise 3: Find the p and R such that the empirical mean square error

$$\widehat{err} = \sum_{q=-Q}^{Q} \left[\hat{m} \left(x_q \right) - m \left(x_q \right) \right]^2$$
, for $x_q = \frac{q\pi}{Q}$ and some Q .

Exercise 4: Compare the results with the outcome of the Gasser-Müller and least-squares algorithm without constraints for the same settings.

 $^1\mathrm{Aka}$ Machine Learning (ML) bread and butter/piece of cake/nuts and bolts...

²http://cvxr.com/cvx/

II. TIPS'N'TRICKS

A. CVX II

% Measurements number N and model size K N = ...; K = ...; Q = ...; % Constraint parameters p = ...; R = ...;

cvx_end

FI = ...;

Y = ...;

B. Intuitive illustration

Compare shapes and areas of the norms in various L_p as in figure below. Relate them to the constrain in (2) and explain the impact on the LS solution.

Fig. 1. Shapes of various unit balls for various L_p norms, $p = 1, 1.5, 2, \infty$