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Abstract

The factoring algorithm proposed by Daubechies and Sweldens, [?] is analyzed and decomposed to the
step-by-step form enabling a direct implementation in Mathematica or Maple script.

Factoring into lifting steps. Below we analyze the algorithm in a detailed manner. Assume we have
the initial filters (or, equivalently, their Z-transforms in a form of Laurent polynomials)

h (z) and g (z) = z−1h
(
−z−1

)
• The crucial operation consists in decomposition of the polyphase representation of h (z), viz. [he ho]T
into lifting steps1.

• Using a matrix notation the Euclidean algorithm can be written as[
he (z)
ho (z)

]
=

n∏
i=1

[
qi (z) 1
1 0

] [
K
0

]
where {qi} is a sequence of quotients produced by the algorithm for polynomials he (z) and ho (z), and
where K is their gcd().2

1The index e stands for even elements (”evens”) of h (z) and o for odd ones (”odds”)

he
(
z2
)
=
h (z) + h (−z)

2
and ho

(
z2
)
=
h (z)− h (−z)

2z−1

2The algorithm is given recursively
qi (z) = ai (z) div bi (z)

where
ai+1 (z) = bi (z) and bi+1 (z) = ai (z)mod bi (z)

with a1 (z) = he (z) and b1 (z) = ho (z), for i = 1, . . . , n (= |ho (z)|+ 1).
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• The tricky identities are applied now (i.e. column and row swapping with the help of permutation
matrix ) [

qi (z) 1
1 0

]
=

[
1 qi (z)
0 1

] [
0 1
1 0

]
=

[
0 1
1 0

] [
1 0

qi (z) 1

]
to yield the factorization which starts to mimic a lifting and dual lifting steps

[
he (z)
ho (z)

]
=

n/2∏
i=1

[
1 q2i−1 (z)
0 1

] [
1 0

q2i (z) 1

] [
K
0

]

• In general, n does not need to be an even number for a given filter h (z). If it is odd, we can multiply
h (z) by z and g (z) by z−1 (which, corresponds to shifting the filters h and g by 2).

• If we now replace
[
K 0

]T
by
[
K 0
0 1/K

]
we obtain the matrix

P 0 (z) =

[
he (z) g0e (z)
ho (z) g0o (z)

]
in which g0e (z) and g

0
o (z) are polyphase representations of a filter g

0 (z) (which is not known and does
not need to be known, actually). Since P 0 (z) has (by its construction) the determinant 1 (note that
for odd n the determinant would have been −1), then go (z) is complementary to h (z) and one step
is suffi cient to lift g0 (z) to g (z)

g (z) = g0 + h (z) s
(
z2
)

where s (z) is some Laurent polynomial (not known either).

• Recall finally that, in a matrix form, this lifting step is given as

P (z) = P 0 (z)

[
1 s (z)
0 1

]
.

• All these facts eventually lead to the factorization

P (z) =

[
he (z) ge (z)
ho (z) ho (z)

]
=

n/2∏
i=1

[
1 q2i−1 (z)
0 1

] [
1 0

q2i (z) 1

][ K 0
0 1/K

] [
1 s (z)
0 1

]

which, in the article by Daubechies and Sweldens, [?], has the equivalent, but far less explicit, form

P (z) =

(
m∏
i=1

[
1 si (z)
0 1

] [
1 0

ti (z) 1

])[
K 0
0 1/K

]
(1)
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where m = n/2 + 1, si (z) = q2i−1 (z) , ti (z) = q2i (z) , for i = 1, . . . , n/2, and where sm (z) = K2s (z)
and tm (z) = 0. To see this equivalence we rewrite it to the following form

P (z) =

n/2∏
i=1

[
1 si (z)
0 1

] [
1 0

ti (z) 1

][ 1 K2s (z)
0 1

] [
1 0
0 1

] [
K 0
0 1/K

]
and recall the trivial identity[

1 K2s (z)
0 1

] [
K 0
0 1/K

]
=

[
K 0
0 1/K

] [
1 s (z)
0 1

]
.

• Note that the factorization (1) is not yet complete since the polynomial s (z) remains unknown. To
find it we merely need to perform the (right and left) multiplications by the inverses of the product

n/2∏
i=1

[
1 q2i−1 (z)
0 1

] [
1 0

q2i (z) 1

]
and by the rightmost diagonal matrix[

1 K2 · s (z)
0 1

]
=

n/2∏
i=1

[
1 q2i−1 (z)
0 1

] [
1 0

q2i (z) 1

]−1 [ he (z) ge (z)
ho (z) go (z)

] [
1
K 0
0 K

]

• Recalling that these inverses are of particularly simple forms[
1 q2i−1 (z)
0 1

]−1
=

[
1 −q2i−1 (z)
0 1

]
and

[
1 0

q2i (z) 1

]−1
=

[
1 0

−q2i (z) 1

]
and applying another well known relation

(A1 · · · · ·An)−1 = A−1n · · · · ·A−11
we obtain the inverse of the productn/2∏

i=1

[
1 q2i−1 (z)
0 1

] [
1 0

q2i (z) 1

]−1 = 1∏
i=n/2

[
1 0

−q2i (z) 1

] [
1 −q2i−1 (z)
0 1

]

• Finally, s (z) can be computed from the formula[
1 K2 · s (z)
0 1

]
=

 1∏
i=n/2

[
1 0

−q2i (z) 1

] [
1 −q2i−1 (z)
0 1

][ he (z) ge (z)
ho (z) go (z)

] [
1
K 0
0 K

]
after performing all multiplications on right-hand side and dividing the corresponding matrix entry by
a scalar K2. Substituting sm (z) by the just computed s (z) in (1) accomplishes the factorization.
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Remark 1 One can use again the form
n∏
i=1

[
qi (z) 1
1 0

]
instead of the more elaborated

n/2∏
i=1

[
1 q2i−1 (z)
0 1

] [
1 0

q2i (z) 1

]
when computing s (z). This alternative formula is therefore simpler a bit[

1 K2 · s (z)
0 1

]
=

(
1∏
i=n

[
0 1
1 −qi (z)

])[
he (z) ge (z)
ho (z) go (z)

] [
1
K 0
0 K

]
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