A detailed analysis of the Daubechies and Sweldens algorithm
of wavelet filter factorization into lifting steps

PMS

October 13, 2011

Abstract

The factoring algorithm proposed by Daubechies and Sweldens, [?] is analyzed and decomposed to the
step-by-step form enabling a direct implementation in Mathematica or Maple script.

Factoring into lifting steps. Below we analyze the algorithm in a detailed manner. Assume we have
the initial filters (or, equivalently, their Z-transforms in a form of Laurent polynomials)

h(z) and g(z) = 2z~ 'h (—z_l)

e The crucial operation consists in decomposition of the polyphase representation of h (z), viz. [he hO]T
into lifting steps'.
e Using a matrix notation the Fuclidean algorithm can be written as
he (2) :ﬁ ¢(z) 11[K
ho (2) ey 1 0 0
1=

where {¢;} is a sequence of quotients produced by the algorithm for polynomials k. (z) and h, (z), and
where K is their ged().?

"The index e stands for even elements (*evens”) of h (z) and o for odd ones (”odds”)

() = MEOERED g () B =k

2The algorithm is given recursively
qi (2) = ai (z) div b; (2)
where
ai+1 (2) = bi (2) and bit1 (2) = a; (z) mod b; (2)
with a1 (2) = he (2) and b1 (2) = ho (2), for i =1,...,n (= |ho (2)| + 1).

e The tricky identities are applied now (i.e. column and row swapping with the help of permutation

matriz)
0 [P 4] ¢

to yield the factorization which starts to mimic a lifting and dual lifting steps

n/2

[Zzgz; } :H[(l) qmll(zw [q%l(Z) (” [IO{]

i=1
e In general, n does not need to be an even number for a given filter A (z). If it is odd, we can multiply

h(z) by z and g (z) by 2~ ! (which, corresponds to shifting the filters h and g by 2).

K

o If we now replace [K 0]T by { 0 1/OK] we obtain the matrix

in which g (z) and g2 (2) are polyphase representations of a filter ¢° (z) (which is not known and does
not need to be known, actually). Since P°(z) has (by its construction) the determinant 1 (note that
for odd n the determinant would have been —1), then g, (z) is complementary to h (z) and one step
is sufficient to lift ¢° (2) to g (2)

g(2) =g +h(2)s (2%

where s (z) is some Laurent polynomial (not known either).

e Recall finally that, in a matrix form, this lifting step is given as

P(2) = P°(2) [é 5(1’") }

e All these facts eventually lead to the factorization
n/2
P(z) = he (2) ge(2) | _ H 1 qi-1(2) 1 0 K 0 1 s(z)
ho (2) he(2) L 0 1 qi(z) 1 0 1/K 0 1
1=
which, in the article by Daubechies and Sweldens, [?], has the equivalent, but far less explicit, form

=i 0Ll DS e

=1

where m = n/2+ 1, 8; (2) = qoi_1 (2), t; (2) = qo; (2), for i = 1,...,n/2, and where s,, (z) = K?s(2)
and t,, (z) = 0. To see this equivalence we rewrite it to the following form

n/2

eer= (I3][ty Y1) [0 19105 206 e]

i=1
and recall the trivial identity

[(1) K2i(Z)H[0(l/OK:_[IO(1/0KH(1) 8(12)]

Note that the factorization (1) is not yet complete since the polynomial s (z) remains unknown. To
find it we merely need to perform the (right and left) multiplications by the inverses of the product

n/2

PR PR

i=1
and by the rightmost diagonal matrix

n/2

1 K?2-s(2)] _ H 1 qoi-1(2) 1 0 he (2) ge(2) + 0
0 1 B iy 0 1 q2i (z) 1 ho (Z) Yo (Z) 0 K
Recalling that these inverses are of particularly simple forms
1 q2;—1 (Z) -t _ 1 —q2i—1 (Z) and 1 0 -1 _ 1 0
0 1 0 1 q2; (Z) 1 —q2; (Z) 1
and applying another well known relation
(Al.....An)_l :A;l.....Al—l
we obtain the inverse of the product
-1
n/2 1
H 1 q2i—1 (Z) 1 0 _ H 1 0 1 —q2i—1 (Z)
1 0 1 q2; (Z) 1 i=n)2 —q2; (Z) 1 0 1

Finally, s (z) can be computed from the formula
1 K2.s(2)] f[1 071 —goi1(2) he(2) ge(2)][% 0
0 1 B — —q2i (2) 1 0 1 ho (2) go(2) 0 K

after performing all multiplications on right-hand side and dividing the corresponding matrix entry by
a scalar K2. Substituting s,, () by the just computed s (z) in (1) accomplishes the factorization. B

Remark 1 One can use again the form
n

=1

instead of the more elaborated

3]
n/2

HERS R [PHERY

=1

when computing s (z). This alternative formula is therefore simpler a bit

T e D) e e

i=n

o X~

0
K

