A detailed analysis of the Daubechies and Sweldens algorithm of wavelet filter factorization into lifting steps

PMS

October 13, 2011

Abstract

The factoring algorithm proposed by Daubechies and Sweldens, [?] is analyzed and decomposed to the step-by-step form enabling a direct implementation in Mathematica or Maple script.

Factoring into lifting steps. Below we analyze the algorithm in a detailed manner. Assume we have the initial filters (or, equivalently, their Z-transforms in a form of Laurent polynomials)

$$
h(z) \text { and } g(z)=z^{-1} h\left(-z^{-1}\right)
$$

- The crucial operation consists in decomposition of the polyphase representation of $h(z)$, viz. $\left[h_{e} h_{o}\right]^{T}$ into lifting steps ${ }^{1}$.
- Using a matrix notation the Euclidean algorithm can be written as

$$
\left[\begin{array}{l}
h_{e}(z) \\
h_{o}(z)
\end{array}\right]=\prod_{i=1}^{n}\left[\begin{array}{cc}
q_{i}(z) & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
K \\
0
\end{array}\right]
$$

where $\left\{q_{i}\right\}$ is a sequence of quotients produced by the algorithm for polynomials $h_{e}(z)$ and $h_{o}(z)$, and where K is their $\operatorname{gcd}() .^{2}$

[^0]- The tricky identities are applied now (i.e. column and row swapping with the help of permutation matrix)

$$
\left[\begin{array}{cc}
q_{i}(z) & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & q_{i}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{i}(z) & 1
\end{array}\right]
$$

to yield the factorization which starts to mimic a lifting and dual lifting steps

$$
\left[\begin{array}{l}
h_{e}(z) \\
h_{o}(z)
\end{array}\right]=\prod_{i=1}^{n / 2}\left[\begin{array}{cc}
1 & q_{2 i-1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2 i}(z) & 1
\end{array}\right]\left[\begin{array}{c}
K \\
0
\end{array}\right]
$$

- In general, n does not need to be an even number for a given filter $h(z)$. If it is odd, we can multiply $h(z)$ by z and $g(z)$ by z^{-1} (which, corresponds to shifting the filters h and g by 2).
- If we now replace $\left[\begin{array}{cc}K & 0\end{array}\right]^{T}$ by $\left[\begin{array}{cc}K & 0 \\ 0 & 1 / K\end{array}\right]$ we obtain the matrix

$$
P^{0}(z)=\left[\begin{array}{cc}
h_{e}(z) & g_{e}^{0}(z) \\
h_{o}(z) & g_{o}^{0}(z)
\end{array}\right]
$$

in which $g_{e}^{0}(z)$ and $g_{o}^{0}(z)$ are polyphase representations of a filter $g^{0}(z)$ (which is not known and does not need to be known, actually). Since $P^{0}(z)$ has (by its construction) the determinant 1 (note that for odd n the determinant would have been -1$)$, then $g_{o}(z)$ is complementary to $h(z)$ and one step is sufficient to lift $g^{0}(z)$ to $g(z)$

$$
g(z)=g^{0}+h(z) s\left(z^{2}\right)
$$

where $s(z)$ is some Laurent polynomial (not known either).

- Recall finally that, in a matrix form, this lifting step is given as

$$
P(z)=P^{0}(z)\left[\begin{array}{cc}
1 & s(z) \\
0 & 1
\end{array}\right] .
$$

- All these facts eventually lead to the factorization

$$
P(z)=\left[\begin{array}{ll}
h_{e}(z) & g_{e}(z) \\
h_{o}(z) & h_{o}(z)
\end{array}\right]=\left(\prod_{i=1}^{n / 2}\left[\begin{array}{cc}
1 & q_{2 i-1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2 i}(z) & 1
\end{array}\right]\right)\left[\begin{array}{cc}
K & 0 \\
0 & 1 / K
\end{array}\right]\left[\begin{array}{cc}
1 & s(z) \\
0 & 1
\end{array}\right]
$$

which, in the article by Daubechies and Sweldens, [?], has the equivalent, but far less explicit, form

$$
P(z)=\left(\prod_{i=1}^{m}\left[\begin{array}{cc}
1 & s_{i}(z) \tag{1}\\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
t_{i}(z) & 1
\end{array}\right]\right)\left[\begin{array}{cc}
K & 0 \\
0 & 1 / K
\end{array}\right]
$$

where $m=n / 2+1, s_{i}(z)=q_{2 i-1}(z), t_{i}(z)=q_{2 i}(z)$, for $i=1, \ldots, n / 2$, and where $s_{m}(z)=K^{2} s(z)$ and $t_{m}(z)=0$. To see this equivalence we rewrite it to the following form

$$
P(z)=\left(\prod_{i=1}^{n / 2}\left[\begin{array}{cc}
1 & s_{i}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
t_{i}(z) & 1
\end{array}\right]\right)\left[\begin{array}{cc}
1 & K^{2} s(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & 1 / K
\end{array}\right]
$$

and recall the trivial identity

$$
\left[\begin{array}{cc}
1 & K^{2} s(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & 1 / K
\end{array}\right]=\left[\begin{array}{cc}
K & 0 \\
0 & 1 / K
\end{array}\right]\left[\begin{array}{cc}
1 & s(z) \\
0 & 1
\end{array}\right]
$$

- Note that the factorization (1) is not yet complete since the polynomial $s(z)$ remains unknown. To find it we merely need to perform the (right and left) multiplications by the inverses of the product

$$
\prod_{i=1}^{n / 2}\left[\begin{array}{cc}
1 & q_{2 i-1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2 i}(z) & 1
\end{array}\right]
$$

and by the rightmost diagonal matrix

$$
\left[\begin{array}{cc}
1 & K^{2} \cdot s(z) \\
0 & 1
\end{array}\right]=\left[\prod_{i=1}^{n / 2}\left[\begin{array}{cc}
1 & q_{2 i-1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2 i}(z) & 1
\end{array}\right]\right]^{-1}\left[\begin{array}{ll}
h_{e}(z) & g_{e}(z) \\
h_{o}(z) & g_{o}(z)
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{K} & 0 \\
0 & K
\end{array}\right]
$$

- Recalling that these inverses are of particularly simple forms

$$
\left[\begin{array}{cc}
1 & q_{2 i-1}(z) \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & -q_{2 i-1}(z) \\
0 & 1
\end{array}\right] \text { and }\left[\begin{array}{cc}
1 & 0 \\
q_{2 i}(z) & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-q_{2 i}(z) & 1
\end{array}\right]
$$

and applying another well known relation

$$
\left(A_{1} \cdots \cdots A_{n}\right)^{-1}=A_{n}^{-1} \cdots \cdots A_{1}^{-1}
$$

we obtain the inverse of the product

$$
\left[\prod_{i=1}^{n / 2}\left[\begin{array}{cc}
1 & q_{2 i-1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2 i}(z) & 1
\end{array}\right]\right]^{-1}=\prod_{i=n / 2}^{1}\left[\begin{array}{cc}
1 & 0 \\
-q_{2 i}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -q_{2 i-1}(z) \\
0 & 1
\end{array}\right]
$$

- Finally, $s(z)$ can be computed from the formula

$$
\left[\begin{array}{cc}
1 & K^{2} \cdot s(z) \\
0 & 1
\end{array}\right]=\left(\prod_{i=n / 2}^{1}\left[\begin{array}{cc}
1 & 0 \\
-q_{2 i}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -q_{2 i-1}(z) \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{ll}
h_{e}(z) & g_{e}(z) \\
h_{o}(z) & g_{o}(z)
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{K} & 0 \\
0 & K
\end{array}\right]
$$

after performing all multiplications on right-hand side and dividing the corresponding matrix entry by a scalar K^{2}. Substituting $s_{m}(z)$ by the just computed $s(z)$ in (1) accomplishes the factorization.

Remark 1 One can use again the form

$$
\prod_{i=1}^{n}\left[\begin{array}{cc}
q_{i}(z) & 1 \\
1 & 0
\end{array}\right]
$$

instead of the more elaborated

$$
\prod_{i=1}^{n / 2}\left[\begin{array}{cc}
1 & q_{2 i-1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2 i}(z) & 1
\end{array}\right]
$$

when computing $s(z)$. This alternative formula is therefore simpler a bit

$$
\left[\begin{array}{cc}
1 & K^{2} \cdot s(z) \\
0 & 1
\end{array}\right]=\left(\prod_{i=n}^{1}\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{i}(z)
\end{array}\right]\right)\left[\begin{array}{cc}
h_{e}(z) & g_{e}(z) \\
h_{o}(z) & g_{o}(z)
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{K} & 0 \\
0 & K
\end{array}\right]
$$

[^0]: ${ }^{1}$ The index e stands for even elements ("evens") of $h(z)$ and o for odd ones ("odds")

 $$
 h_{e}\left(z^{2}\right)=\frac{h(z)+h(-z)}{2} \text { and } h_{o}\left(z^{2}\right)=\frac{h(z)-h(-z)}{2 z^{-1}}
 $$

 ${ }^{2}$ The algorithm is given recursively

 $$
 q_{i}(z)=a_{i}(z) \operatorname{div} b_{i}(z)
 $$

 where

 $$
 a_{i+1}(z)=b_{i}(z) \text { and } b_{i+1}(z)=a_{i}(z) \bmod b_{i}(z)
 $$

 with $a_{1}(z)=h_{e}(z)$ and $b_{1}(z)=h_{o}(z)$, for $i=1, \ldots, n\left(=\left|h_{o}(z)\right|+1\right)$.

