
II. INVERSE ESTIMATION ALGORITHMS

A. Direct inversion approach

One of the simplest solution to the inverse recovery problem is based on the following basic relation

between a function and its inverse

m−1 (u) =

∫ 1

0
1 {m (υ) ≤ u} dυ, (2)

which, given a set of the (sorted increasingly w.r.t. values of uk’s) input-output measurements

{(uk, yk = m (uk) + zk)} , n = 1, . . . , N , leads to the natural (empirical distribution function-like)

estimate of the nonlinearity inverse

m̃−1 (u) = N−1
N∑
k=1

1 {yk ≤ u} . (3)

By definition, the estimate is isotone. One can however expect that the above estimate works well

only when the input signal is uniform (which is nevertheless the case in some applications; see e.g.

[6], [7]).

B. Dette’s et al. approach

In [8], Dette et al. presented a novel algorithm which estimates a monotonous regression function

in a nonparametric fashion, that is, without implying any other assumption on its shape. The resulting

estimate preserves the isotonicity property and works for non-uniform input probability density

functions as well. The algorithm has three steps:

1) Initial estimation of a nonlinearity. This (preliminary) step can be performed with the help

of virtually any nonparametric regression estimate, m̂ (u) say, like a Nadaraya-Watson or a

Gasser-Müller one, see e.g. [9], [10], [11]. Observe that the estimate is in general not isotone

and will serve in the subsequent algorithm steps.

2) Estimation of the inverse of the nonlinearity. This step has two phases. In the first, the

density of the output signal, i.e. of the function
(
m−1

)′
(u), is estimated using any density

estimate with a non-negative kernel (see e.g. [12], [13]), and the initial nonlinearity estimate

m̂ (u) obtained in the the previous step. The inverse, m̂−1 (u), is then estimated by virtue

of the basic observation that, given an estimate
(
m̂−1

)′
(u) , the nonlinearity m̂−1 (u) can be

recovered from the following formula

m̂−1 (u) =

∫ u

0

(
m̂−1

)′
(υ) dυ. (4)

Note here, that the resulting inverse estimate, m̂−1 (u), is isotone (by virtue of the assumption

that the density estimate
(
m̂−1

)′
(u) is based on non-negative kernel functions).

3) Recovering the isotone nonlinearity by inverting the estimate m̌ (u) =
(
m̂−1

)−1
(u).

In [8, Theorems 3.1-3.2 ], consistency of the algorithm has been proven for the case of i.i.d. data.
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C. Haar series implementations

In the original algorithm, the kernel-based estimates of the output density probability function and

of the nonlinearity itself were employed (with the only restriction that a kernel function is non-negative

in order to preserve monotonicity of the estimate). In the note we present the algorithm instances

based on orthogonal Haar wavelet bases; see e.g. [11]. Furthermore, since we apply their algorithm

to the linearization problem, we only use the first two steps of the algorithm. The details describing

the Haar orthogonal series estimates, which can be used in the implementations, are presented in the

Appendix. The two-step counterpart of the Dette’s algorithm above has the following form:

1) Estimate the nonlinearity using any Haar wavelet-based regression function estimate (cf. (10)-

(13) in Appendix). For instance, the order-statistic (OS) one, where

m̂ (u) =
2M−1∑
n=0

α̂KnϕKn (u) , where α̂Kn =
N∑
k=1

yk

∫ uk

uk−1

ϕKn (u) du. (5)

2) Given the initial estimate m̂ (u), the Haar estimate (of a histogram-like shape) of the output

density has a form

(
m̂−1

)′
(u) =

2M−1∑
n=0

âMnϕMn (u) , where âMn =
1

N

N∑
k=1

ϕMn

(
m̂
(
k
N

))
. (6)

Subsequently, the Haar estimate of the inverse of the nonlinearity is then computed from(
m̂−1

)′
(u) using the empirical distribution-like formula (cf. (2) and (4))

m̂−1 (u) =

∫ u

0

(
m̂−1

)′
(υ) dυ. (7)

In (5) and (6), K and M are the respective scale factors of the Haar series estimates.

Remark 1: Essentially, we compute the density estimate from the estimate of the nonlinearity and

then integrate it as in the Dette’s algorithm. Nevertheless, exploiting a simple and explicit form of the

Haar function, we can readily improve the computation burden using the already integrated scaling

functions (viz. their indefinite integrals; cf. (7))

m̂−1 (u) =

2M−1∑
n=0

âMn

∫ u

0
ϕMn (υ) dυ =

2M−1∑
n=0

âMnΦMn (u) , (8)

where ΦMn (u) is the indefinite integral of the scaling function ϕMn (u), i.e. the function of the form

ΦMn (u) = 2−
M

2


0 if 2Mu < n

2Mu−n
2M if n ≤ 2Mu < n+ 1

1 if n+ 1 ≤ 2Mu

.

Note that the normalization factors 2−
M

2 in ΦMn (u) and 2
M

2 in ϕMn (u) compensate each other.

In a similar manner, the integration in (5) can be replaced by subtraction of the indefinite integrals

ΦKn (u) – see Appendix B
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