# Shannon theorem revisited... 

Przemysław Śliwiński


#### Abstract

We state (after Claude Shannon) that if $x(t)$ is bandlimited, i.e. its Fourier transform is compactly supported in $[-W, W]$, then $$
\begin{aligned} x(t) & =\sum_{n=-\infty}^{\infty} x(n T) \cdot \frac{\sin \left(\frac{\pi}{T}(t-n T)\right)}{\frac{\pi}{T}(t-n T)} \\ & =\sum_{n=-\infty}^{\infty} x(n T) \cdot \operatorname{sinc}\left(\frac{\pi}{T}(t-n T)\right) \end{aligned}
$$


where $T=2 W$.

Proof: For $x(t)$, its Fourier transform is given as

$$
\mathcal{X}(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi \cdot t \omega} d t
$$

Its inverse yields $x(t)$ again

$$
x(t)=\int_{-\infty}^{\infty} \mathcal{X}(\omega) e^{+j 2 \pi \cdot \omega t} d \omega=\int_{-W}^{W}[\mathcal{X}(\omega)] \cdot e^{+j 2 \pi \cdot \omega t} d \omega
$$

Since $\mathcal{X}(\omega)$ is compactly supported, we can expand it into a Fouries series

$$
\mathcal{X}(\omega)=\sum_{n=-\infty}^{\infty} \alpha_{n} \cdot e^{-j 2 \pi \cdot \frac{n \omega}{2 W}}
$$

where

$$
\alpha_{n}=\frac{1}{2 W} \int_{-W}^{W} \mathcal{X}(\omega) \cdot e^{+j 2 \pi \cdot \frac{n \omega}{2 W}} d \omega=\frac{1}{2 W} \cdot x\left(\frac{n}{2 W}\right) \text { (why!?). }
$$

Thus

$$
\mathcal{X}(\omega)=\sum_{n=-\infty}^{\infty} \frac{1}{2 W} x\left(\frac{n}{2 W}\right) \cdot e^{-j 2 \pi \cdot \frac{n \omega}{2 W}}
$$

and

$$
\begin{aligned}
x(t) & =\int_{-W}^{W}\left[\sum_{n=-\infty}^{\infty} \frac{1}{2 W} x\left(\frac{n}{2 W}\right) \cdot e^{-j 2 \pi \cdot \frac{n \omega}{2 W}}\right] e^{+j 2 \pi \cdot \omega t} d \omega \\
& =\sum_{n=-\infty}^{\infty} x\left(\frac{n}{2 W}\right) \cdot \underbrace{\frac{1}{2 W} \int_{-W}^{W} e^{+j 2 \pi \cdot \omega\left(t-\frac{n}{2 W}\right) d \omega}}_{=\operatorname{sinc}\left(\frac{\pi}{T}(t-n T)\right)(\text { why?!) }}
\end{aligned}
$$



The interpolation formulas are as simple as that

$$
\begin{aligned}
& f(x, T, N)=\sum_{n=-N}^{N} \sin \left(\frac{n \pi}{N}\right) \cdot s(x, T, n) \\
& l(x, T, N)=\sum_{n=-N}^{N} \frac{n \pi}{N} \cdot s(x, T, n) \\
& h(x, T, N)=\sum_{n=-N}^{-1} \sin \left(\frac{N}{n \pi}\right) \cdot s(x, T, n)+\sum_{n=1}^{N} \sin \left(\frac{N}{n \pi}\right) \cdot s(x, T, n)
\end{aligned}
$$

Where we have a $\operatorname{sinc}(x)$ function defined as

$$
s(x, m, n)=\frac{\sin (\pi(m x-n))}{\pi(m x-n)}
$$

Guess the original function which interpolation has such a Batman-like shape...


